Specific decrease in the level of Hic-5, a focal adhesion protein, during immortalization of mouse embryonic fibroblasts, and its association with focal adhesion kinase

Author(s):  
Keiko Ishino ◽  
Joo-ri Kim Kaneyama ◽  
Motoko Shibanuma ◽  
Kiyoshi Nose
2021 ◽  
Vol 11 (4) ◽  
pp. 204589402110490
Author(s):  
Joseph B. Mascarenhas ◽  
Amir A. Gaber ◽  
Tania M. Larrinaga ◽  
Rachel Mayfield ◽  
Stefanie Novak ◽  
...  

Increases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting stimulus. Total internal reflection fluorescence demonstrates that EVL is present in endothelial cell focal adhesions and impacts focal adhesion size, distribution, and the number of focal adhesions generated in response to S1P and thrombin challenge, with the focal adhesion kinase (FAK) a key contributor in S1P-stimulated EVL-transduced endothelial cell but a limited role in thrombin-induced focal adhesion rearrangements. In summary, these data indicate that EVL is a focal adhesion protein intimately involved in regulation of cytoskeletal responses to endothelial cell barrier-altering stimuli. Keywords: cytoskeleton, vascular barrier, sphingosine-1-phosphate, thrombin, focal adhesion kinase (FAK), Ena-VASP like protein (EVL), cytoskeletal regulatory protein


Channels ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 229-238
Author(s):  
Maria Papanikolaou ◽  
Shawn M. Crump ◽  
Geoffrey W. Abbott

Oncogene ◽  
2021 ◽  
Author(s):  
Qiuping Xu ◽  
Jingwei Zhang ◽  
Brian A. Telfer ◽  
Hao Zhang ◽  
Nisha Ali ◽  
...  

AbstractThere is overwhelming clinical evidence that the extracellular-regulated protein kinase 5 (ERK5) is significantly dysregulated in human breast cancer. However, there is no definite understanding of the requirement of ERK5 in tumor growth and metastasis due to very limited characterization of the pathway in disease models. In this study, we report that a high level of ERK5 is a predictive marker of metastatic breast cancer. Mechanistically, our in vitro data revealed that ERK5 was critical for maintaining the invasive capability of triple-negative breast cancer (TNBC) cells through focal adhesion protein kinase (FAK) activation. Specifically, we found that phosphorylation of FAK at Tyr397 was controlled by a kinase-independent function of ERK5. Accordingly, silencing ERK5 in mammary tumor grafts impaired FAK phosphorylation at Tyr397 and suppressed TNBC cell metastasis to the lung without preventing tumor growth. Collectively, these results establish a functional relationship between ERK5 and FAK signaling in promoting malignancy. Thus, targeting the oncogenic ERK5-FAK axis represents a promising therapeutic strategy for breast cancer exhibiting aggressive clinical behavior.


Development ◽  
2014 ◽  
Vol 141 (19) ◽  
pp. e1906-e1906
Author(s):  
P. D. Uchil ◽  
T. Pawliczek ◽  
T. D. Reynolds ◽  
S. Ding ◽  
A. Hinz ◽  
...  

Gene ◽  
2000 ◽  
Vol 249 (1-2) ◽  
pp. 99-103 ◽  
Author(s):  
Jun'ichi Mashimo ◽  
Motoko Shibanuma ◽  
Hitoshi Satoh ◽  
Kazuhiro Chida ◽  
Kiyoshi Nose

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Daniel Ngabire ◽  
Irvine Niyonizigiye ◽  
Maheshkumar Prakash Patil ◽  
Yeong-Ae Seong ◽  
Yong Bae Seo ◽  
...  

Tumor microenvironment components dictate the growth and progression of various cancers. Tumor-associated macrophages are the most predominant cells in TME and play a major role in cancer invasiveness. Gastric cancer is one of the most common cancers in Asia, and recently, various cases of resistance to fluorouracil treatment have been reported. In this study, we investigated the role of alternatively activated macrophages in the resistance of AGS gastric cancer cells to fluorouracil. THP-1 cells were polarized using recombinant human IL-4, then were cocultured with AGS cells treated with fluorouracil. Cell viability, Western blot, immunofluorescence, and cell invasion were performed for this investigation. Our results demonstrated that polarized macrophages initiated the survival of treated AGS cells and induced the resistance in AGS by upregulating the expression of integrin β3, focal adhesion protein (FAK), and cofilin proteins. These results reveal that integrin β3, focal adhesion protein (FAK), and cofilin proteins are potential targets for the improvement of fluorouracil efficacy in gastric cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document